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The basic theory of the volumetric and thermodynamic properties of fluids is examined in relation to the statistical me
chanical proof of the theory of corresponding states. It is shown that the general range of non-polar or slightly polar "nor
mal" liquids cannot be expected to conform to the hypothesis of corresponding states but may well conform to a slightly 
more complex equation involving just one additional parameter. Rigorous theoretical test can be made only for the second 
virial coefficient. There it is found that linear and globular non-polar molecules fit this theory very exactly and that slightly 
polar molecules also conform in reasonable approximation. 

The quanti ta t ive representation of the volume
tric behavior of fluids over both gas and liquid re
gions has proven to be an unusually difficult prob
lem. I t is now over eighty years since van der 
Waals2 first proposed his famous equation of state. 
Yet today we are still in serious need of improve
ments in the prediction and correlation of the volu
metric properties of fluids. This situation is in 
marked contrast to the extensive theoretical ad
vances with respect to the thermodynamic prop
erties of ideal gases. 

Our understanding of the forces operating be
tween molecules has developed rapidly since the 
emergence of a satisfactory quan tum theory in 
1926. Particularly important is the work of Lon
don on the at t ract ive forces between molecules. 
Also it became clear tha t certain anomalous prop
erties of hydrogen and helium arise from quan tum 
effects in the translational motion of those mole
cules. However, our understanding of intermo-
lecular forces also indicated a bewildering complex
ity of effects which probably tended to discourage 
a t tempts at systemization. 

The most generally useful method of prediction 
of the volumetric properties of fluids is the hypothe
sis of corresponding states, which also came origi
nally from van der Waals. Engineers have used this 
method extensively to obtain estimated properties 
for design purposes, and many authors have pre
sented charts of both volumetric and related ther
modynamic properties on the basis of correspond-

(1) This research was a part of the program of Research Project 50 
of the American Petroleum Institute. 

(2) J. H. van der Waals, Dissertation, Leiden, 1873. 

ing states. Hougen and Watson3 give a particu
larly extensive discussion of this method, together 
with estimates of the accuracy to be expected. 
They indicate tha t the maximum error in predicted 
volume is about 15% while errors in other predicted 
properties range from 5 to 3 5 % . These percent
ages indicate the degree to which actual substances 
conform to the hypothesis of corresponding states. 

I t is the purpose of this series of papers to present 
a correlative and predictive scheme which is only 
slightly more complex but which yields results 
about one order of magnitude more accurate. 
This scheme involves one parameter in addition to 
the critical constants for each substance. I t is pos
tulated tha t any group of substances having the 
same value of this additional parameter will con
form within the group to the corresponding states 
principle. 

The possibility of a scheme of this type has been 
mentioned on several past occasions. Nernst sug
gested it in the 1907 edition of "Theoretischen 
Chemie"4 but dropped it in later editions. Re
cently Meissner and Seferian5 discussed such a 
scheme, bu t we shall see tha t their a t t empt to in
clude highly polar substances such as water neces
sarily impaired the accuracy of the results. How
ever, Riedel6 has discussed vapor pressures on a 
basis very similar to tha t which we have selected. 

(3) O. A. Hougen and K. M. Watson, "Chemical Process Principles, 
Part Two, Thermodynamics," John Wiley and Sons, Inc., New York, 
N. Y., 1947, Chapter VII. 

(4) See quotation in ref. 6. 
(5) H. P. Meissner and R. Seferian, Chem. Eng. Progress, 47, 579 

(1951). 
(6) L. Riedel, Chem. Ins. Tech., 26, 83 (1954). 
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He excluded highly polar or associated liquids and 
the quantum liquids (H2 and He) and showed that the 
remaining normal liquids had reduced vapor pres
sure curves falling accurately into a single family. 
We shall return to Riedel's work in a later paper 
when other properties of the two phase region are 
discussed. Rowlinson7 has also presented certain 
theoretical work which yields a correlation scheme 
similar to the present one. 

In this paper we present the theoretical back
ground in terms of modern molecular data and dis
cuss theoretical second virial coefficients calculated 
from appropriate models. 

Classification of Substances; Intermolecular 
Forces 

Simple Fluids.—Our present theoretical knowl
edge is of great aid in selecting the substances 
which may reasonably be expected to conform to a 
particular equation. The theoretical requirements 
for conformity to the postulate of corresponding 
states have been given in several places including a 
paper by the present author8 which includes a more 
detailed presentation of several topics essential to 
the present development. The simplest class of 
substances following corresponding states behavior 
comprises the heavier rare gases (A, Kr, Xe) and 
methane. The principal characteristics are spher
ical shape (which methane gains by rapid and rela
tively free rotation) and an inverse sixth power at
tractive potential. London's theory yields this 
force law and applies to cases where the valence 
shells of all atoms are rilled. We shall adopt the 
term simple fluid9 for this class of substances. 

Since the intermolecular potential curve is of 
primary importance, it is wise to discuss it a little 
further. WTe distinguish between time average or 
permanent electric moments (the usual dipole 
moments) and instantaneous moments arising 
from the momentary location of the electrons. 
The inverse sixth power at tractive term arises 
from the interaction of instantaneous dipole mo
ments. Higher power terms arise from higher 
electrical moments, but these are small and their 
effect may be absorbed in our ignorance of the re
pulsive potential. We know tha t molecules repel 
one another on close approach, tha t this repulsion 
arises very suddenly, and tha t it is a manifestation 
of the Pauli exclusion principle. However, we do 
not have a good simple mathematical expression 
for this repulsive effect. While exponential terms 
are believed to be somewhat superior expressions of 
this repulsive potential, inverse power terms are 
much easier to use and have proven almost as satis
factory. The best compromise of accuracy and 
simplicity is probably the Lennard-Jones or 6-12 
potential given by the expression 

<"- [ (?)"-G 5 OI <» 
where to is the depth of the potential minimum, r is 
the intermolecular distance, and r0 its value at the 

(7) J. S. Rowlinson, Trans. Faraday Soc, 50, (547 (1954). 
(8) K. S. Pitzer, J. Chem. Phys., 7, 583 (1939), The symbols E1 

A and Ro of that paper become e, eo and ra in the present text. 
(9) In the earlier paper5 the term perfect liquid was used. Exten

sion of the treatment to the imperfect gas region makes a change obvi
ously desirable. 

minimum. We shall also define a as the collision 
diameter which is the point of zero energy on the 
repulsive branch of the curve. I ts value is 

a = (2-7e)r0 

The curve of equation 1 is shown as the solid line 
in Fig. 1. 

Another important characteristic of London 
forces is their additivity. To a first approxima
tion, equation 1 may be applied to each intermo
lecular distance in a large assemblage of molecules. 
The accuracy of this approximation has been 
studied by Axilrod.10 

We have assumed a simple fluid to be one having 
an intermolecular potential essentially like equa
tion 1. Each substance has its own value of e0 and 
ra. These are related to the critical temperature 
and critical volume, respectively. But the shape 
of the curve is the same for all simple fluids. 

An additional limitation on the simple fluid is the 
absence of quantum effects for molecular transla
tion. Helium and hydrogen must be excluded on 
this account. Neon also deviates at low tempera
tures from the simple fluid behavior for this reason. 
Since we have already named all of the substances 
likely to deviate because of quantization of molec
ular translation, there is little need to extend gen
eral correlation schemes to cover this area. The 
volumetric behavior of these substances is known 
and does not need to be predicted from a practical 
point of view. We shall ignore quantum fluids here
after and turn our at tention to other types. 

Globular Molecules.— Next let us consider large 
molecules of nearly spherical shape, globular mole
cules. Neopentane, C(CH3)4, is a simple example. 
The at tract ive forces are still of the London type 
but now the effective centers are the peripheral at
oms or the methyl groups. The intermolecular 
potential may be taken as the sum of inverse sixth 
power terms summed over the various distances 
between methyl groups and is no longer an inverse 
sixth power potential between molecular centers. 
This effect is probably responsible for most of the 
deviation of neopentane from simple fluid behavior, 
but there is also probably some deviation from 
spherical shape. 

Figure 1 shows the effect of this globular charac
ter on the intermolecular potential curve. Two ap
proximations are given. The dashed line is based 
on the core model of Kihara.11 He assumes a 
core inside each molecule and then takes the Len
nard-Jones potential for the shortest distance be
tween molecular cores. The potential is thus 

— [(f)"-»(?)•] 
where p is the shortest distance between the cores, 
Po, this distance at the potential minimum, and a is 
the radius of the spherical core. In the present 
case of spherical cores, p = r — 2a. For the curve 
in Fig. 1 we take a spherical core of diameter equal 
to one fourth of the intermolecular distance at the 
potential minimum,-i.e., a = 0.12.V0 = O.KiTpo. 

Since at tract ive effects between the more dis
tan t parts of the molecule are not negligible, al-

(10) B. M. Axilrod, J. Chem. Phys., 19, 719, 724 (19.31). 
i'll) T. Kihara, Rev. Mod. Phys., 25, 831 (1953); and earlier papers 

there cited; see also J. S. Rowlinson, J. Chem. Phys., 20, 337 (1952). 
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Fig. 1.—The intermolecular potentials for globular mole
cules; see text for details. 

though repulsive effects presumably are, we also 
investigate additional models. Repulsion will be 
taken as the inverse twelfth power of the minimum 
distance between the surfaces of spherical cores, 
like the Kihara model. The attractive force will 
be taken as arising from centers distributed equally 
on the surface or through the volume of the spheri
cal core. By expanding the integral for the at
tractive potential in a Maclaurin series in the radius 
of the core, a, the following expressions result. 
They may be arranged as 

V{r) = - cr-><p(a/r) (3) 

where the surface model yields 

ts = 1 + 10 (O' - (?) (•)' 
and the volume model yields 

n¥)C!)' 

+ 480 

+ 160 (J)' 
The complete potential becomes 

O - 2a)1 ; 4>{a/r) 

(4) 

(5) 

(6) 

where c\ and c» are constants which can be evalu
ated in terms of e0 and ro for any particular value of 
a/r0. 

In the important region near the potential mini
mum these two models give similar results pro
vided the core radius of the surface model is taken 
as about 0.8 of that for the volume model. The 
dotted curve in Fig. 1 shows the potential for the 
surface model with a = 0.2r0. The nearly equiva
lent volume model would have a = 0.25r0. It is 
apparent from Fig. 1 that the Kihara model with 
a = 0.12Sr0 is very similar in its net effect—a little 
steeper outside the minimum and a little less steep 
inside. Thus there seems little need to pursue 
these additional models further except to note that 
the Kihara core radius should be taken consider
ably smaller than that of the polarizable electron 
cloud. 

The important effect of the globular character of 
a molecule on its potential function, as is evident 
from any of the models, is a narrowing of the po
tential minimum. This decreases the probability 
of any given clustering of molecules at a given ratio, 
e0/kT, of the intermolecular potential energy to 

thermal energy. In statistical mechanics probabili
ties are proportional to volumes in phase space, 
and in this case the important dimension is the 
range of intermolecular distance within the poten
tial curve at a height approximately kT above the 
minimum. Likewise decreased probabilities lead 
to decreased entropies. Thus we expect the de
crease in entropy from the ideal gas state to some 
comparable state in the imperfect gas or liquid re
gion to be greater for globular molecules than for 
those of simple fluids. 

Since the liquid state represents the essentially 
complete clustering of the molecules, the vapor-
liquid equilibrium should give the most marked 
manifestation of the effect just mentioned. With 
a greater decrease in entropy on condensation for 
globular molecules, the temperature must be lower, 
relatively, before condensation takes place. Also 
the change in vapor pressure with temperature will 
be more rapid for substances with globular mole
cules than for simple fluids. This is shown in Fig. 
2. Eventually, we shall take this increase in slope 
of the vapor pressure curve over that of a simple 
fluid as the essential third parameter of our theory. 

Fig. 2.—Reduced vapor pressure curves (P8 is the sat. 
vapor pressure). The dashed curves are, from, the top, 
for propane, re-pentane and w-heptane, respectively. 

The derivation of the theory of corresponding 
states for simple fluids is easily extended to sub
stances with globular molecules.12 The essential 
requirement is that the shape of the intermolecular 
potential curve be the same for all substances in the 
class which is to conform to the theory. Thus on 
any one of the core models, if the ratio of the core 
radius to the intermolecular distance at the poten
tial minimum (<x/fo) is the same for a group of sub
stances, then that group will follow correspond
ing states behavior. The behavior of this group 
will differ, however, from that of simple fluids 
where the core radius is zero. 

Alternatively, we may say that the volumetric 
behavior of a fluid with globular molecules is a 
function of three variables: (1) the depth of the 
potential minimum e0, (2) the intermolecular dis
tance at the minimum r0, and (3) the relative core 
size a/ro. Simple fluids form the special case with 
a/rt> = 0. In terms of macroscopic properties one 

(12) See ref. S. There is now a different function <p but the proof is 
exactly the same. 



3430 K E N N E T H S. PITZER Vol. 77 

may identify the critical temperature, the critical 
volume and the surplus slope of the vapor pressure 
curve (over tha t of a simple fluid) as yielding the 
equivalent information. 

Our general correlation scheme is essentially tha t 
defined in the preceding paragraph. However, to 
be useful it must apply to a broader class of sub
stances than have been considered so far. 

Non-spherical, Non-polar Molecules.—Let us 
turn now to non-polar molecules of irregular shape. 
Kihara2 1 has extended his core model to such cases 
by taking cores of non-spherical shape. We shall 
show later t ha t the first-order effect of the introduc
tion of a core on the second virial coefficient is the 
same for all shapes of core. This arises because the 
essential effect is a narrowing of the potential 
minimum even though it must now be studied in 
multidimensional space. 

The Kihara model assumes the same minimum 
energy for a pair of molecules a t their opt imum sep
aration regardless of their orientation. This is prob
ably an oversimplification. Thus it seems likely 
tha t two long molecules exert greater attraction 
when lying side by side at the opt imum distance 
apar t than when they are oriented end to end. 
However, the introduction of this effect will again 
merely further narrow the potential curve in this 
generalized sense. In other words, the minimum 
energy is attainable only for opt imum orientation as 
well as linear separation. Consequently, the volume 
in multidimensional configuration space just above 
the minimum (by the order of kT) is relatively 
smaller than it would be for a spherical molecule. 

I t is not pretended tha t the exact effect of non-
spherical shape is the same for every shape or the 
same as for globular character. However, the mac
roscopic properties are calculated by averaging 
appropriate functions over all space and are fre
quently insensitive to details. Consequently it 
seems likely t ha t the behavior of a substance with 
non-polar molecules of non-spherical shape will 
conform closely to tha t of globular molecules with 
some value of the (a,'V0) parameter. This postulate 
will be tested in the comparisons to follow. 

Polar Molecules.—The interaction potential of 
permanent dipoles of fixed orientation varies as the 
inverse third power of the distance between their 
centers. Also it is highly dependent on their 
orientation—indeed it is repulsive for half of the 
possible solid angle. Consequently, it is apparent 
t ha t a cluster of non-rotating dipolar molecules will 
have properties significantly different from those of 
non-polar molecules. 

If the dipolar effects are small compared to thermal 
energies, then one does obtain an inverse sixth 
power interaction potential because of a partial ex
cess of favorable orientations. The formula for 
this "orientation effect" is 

e" = ~ 3 *7>6 + " ' ( 7 ) 

where /i is the dipole moment. 
For many substances the interaction of their 

permanent dipole moments constitutes only a small 
perturbation to the London force already present. 
Examples include H2S, CH3Cl and H C l / Even in 
HCl the calculations indicate tha t the orientation 

effect constitutes less than 2 0 % of the total inter
action energy at room temperature.1 3 In such 
cases the effect of the permanent dipole on the in-
termolecular potential function is again tha t of a 
narrowing. Just as for non-spherical, non-polar 
molecules, the lowest energy arises only in the most 
favorable angular orientation. Thus the relative 
volume in a general configuration space just above 
the potential minimum will be reduced in the polar 
case as compared to tha t for a spherical non-polar 
molecule. We will leave it to later comparisons to 
show the degree of similarity in the effect on volu
metric properties of small dipole moments and of 
non-polar types of deviation (i.e., globular or non-
spherical). 

Virial Coefficients 
While it is impractical at the moment to carry 

our general theoretical studies much further, the 
second virial coefficient has been calculated for 
several of these models. We shall draw chiefly upon 
the work of Kihara1 1 on his core models and t ha t of 
Hirshfelder, McClure and Weeks14 and tha t of 
Rowlinson15 on molecules with permanent dipoles 
in addition to a Lennard-Jones 6-12 potential. 
The lat ter potential is 

— [ ( ? ) " - G * ) 1 
„2 

T (2 cos 0i cos 62 — sin Bi sin 9* cos <p) (8) 
Here it must be remembered t ha t e0 and ra have 
lost the precise significance they had in the non-po
lar case; also di and 62 are the angles the dipoles 
make with the axis connecting them while ip is the 
difference in their azimuthal angle. 

Kihara 's final formula11 for all of his core models 
gives for the second virial coefficient 

B = 2 ^ N11PlF1(Z) + M0PlF-IZ) + 

(5, +£ ' )*(*)+ (7o + ^ ) (9) 

where Z = (e0/kT), p0 is the core separation for 
minimum energy, see eq. 2, and Mo, SQ and Vo are 
the mean curvature, the surface area and the vol
ume of the core, respectively. He gives expres
sions for many shapes of cores. We shall use only 
the two extreme shapes, as follows 
thin rod of length I: 

M0 = TTI, S0 = V0 = 0 
sphere of radius a: 

M0 = 4TTO, S0 = 47roa, V0 = 4vas/3 

For these two cases the virial coefficient formulas 
become 
Thin rod: 

B J I 4 W ) + 3
2 Q H (i0a) 

Sphere: 
B = ~ pi [F1(Z) + 6 ( £ ) F.,(z) + 

12 ( £ ) ' F1(Z) + 8 ( £ ) ' ] (10b) 

(13) F. London, Trans. Faraday Soc, 33, 8 (1937), 
(14) J. O. Hirshfelder, F. T. McClure and I. F. Weeks, J. Chem. 

Phys., 10, 201 (1942). This paper uses rn for the collision diameter 
which is here designated a. 

(15) J. S. Rowlinson, Trans. Faraday Soc, 45, 974 (1049). 
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In the absence of a core, p0 becomes r<j, and F3 gives 
the virial coefficient for a Lennard-Jones gas which 
is our "simple fluid." It is evident that, for small 
values of / or a, the effect in each case is to intro
duce a small component of F2. All shapes of core 
give this same result for the first order deviation 

B = ~ N0Pl [F3(Z) + XF2(Z)] (11) 

Turning now to the permanent dipole molecules, 
the second virial coefficient is14 

B N,rl [F3(Z) + yH(Z) + yU(Z). . . . ] (12) 

where16 ô is the distance at the minimum in the 
non-polar part of the potential function, see equa
tion 8, and y = yuVê o is the parameter which 
measures the relative importance of the dipole. 
This is a series and additional terms are available 
but are not needed for our purposes. 

For ease in our calculations we fitted third-order 
equations to the tabulated values of the virial coef
ficient functions over the range from the lowest use
ful temperatures to about four times the critical 
temperature. Our four-constant expressions for 
the various functions are 

F3 = 0.5188 - 1.62232 - 0 .5235Z 2 - 0 .1684Z 3 ( i 3 a ) 

F 2 = 0.6426 - 0 .7237Z - 0 .3677Z 2 - 0 .0936Z 3 (13b) 

F1 = 0.8007 - 0 .2443Z - 0 .1993Z 2 - 0 .0372Z 3 (13c) 

H = 0.0168 - 0 .165Z - 0 .119Z 2 - 0 .630Z 3 (13d) 

/ = 0.0135 - 0 .119Z + 0 .319Z 2 - 0 .302Z 3 (13e) 

No unusual effort was made to maximize the accu
racy of these expressions, since the original functions 
are available for precision work. It is believed 
that they are accurate to at least 1% or 0.001 
(whichever is larger) in the range 0.2 < Z < 2 for 
F1, F2 and F% and 0.2 < Z < 1 for Hand / . Rowlin-
son15 gives tables for dipolar molecules in the range 
Z> 1. 

Our interest is to determine the extent to which 
shape or dipole factors cause deviation from the 
postulate of corresponding states. Since the criti
cal properties have not been calculated for these 
models we shall use the Boyle point as the reference 
point for reduced variables. However, to avoid 
possible confusion with the usual reduced variables 
we shall always write the explicit ratios, T/TB, 
Z/'ZB, B/V-B, etc. We take the reference volume to 
be 

» B - ( r*4) --( 
Z)TJT=TB \ 

Z ^ ) (14) 

in accordance with Kihara. 
Since the addition of functions F2 and H in 

equations 11 and 12 affects the reference points, 
the final reduced equation had to be corrected for 
this effect. To the first order, the result is 

B -Pl 
r-i -

."BJO 

0.908 - 0.824 

E (D]0
+ y K (?B)1 

(W 

(15) 

0.00720 I hS (15a) 

(16) Note that our functions are related to those of reference 14 
as follows: y = x/2, Ft = Fa/y/2, H = \ / 2 Hn, J = 2 \ / 2 /is. These 
changes were made for consistency with Kihara's equations. 

Ld* VB/Jo 

I"-C-Yl = 
Ldy \Z>B/Jo 

-0.079 + 0.148 (J^\ -

0.0597 ^ V - 0.0096 (~BY (15b) 

-0.0444 + 0.065 (J^\ + 

0.0039 n^Y -0.0244 ( ^ Y (15c) 

The effect of the reduction is to make each function 
zero at T = TB- The slope of the base function is 
unity at this point while the slope of each deriva
tive function is zero. The range of validity of 
these equations is for (TB/T) from 0.7 to 6 for 
(15a and b) and to 3.5 for (15c). 

While the derivative functions 15b and 15c do 
not look very much alike in equation form, it is ap
parent from Fig. 3 that they are actually quite simi
lar. It is a coincidence, of course, that x and y have 
been defined in a manner that these two functions 
have similar magnitude as well as the same shape. 

Fig. 3.—Reduced second virial coefficient functions. 

Our basic correlation scheme as stated above is to 
involve just one variable in addition to the energy 
and distance parameters. For the moment we 
take this variable to be the x defined by equation 11 
for the core model. Now we may determine the 
extent to which dipole effects may be substituted 
for core effects without exceeding some limit of er
ror. Let us consider a limit such as 1%, which is 
a high accuracy for virial coefficients, and take the 
range of temperature above TB/3.5. We find that 
the two effects are interchangeable within the limit 
of validity of the first-order equation 15. We turn, 
therefore, to a comparison of curves for finite val
ues of the parameters for linear, spherical and di
polar molecules. Such a set of curves is shown in Fig. 
4. A more sensitive comparison is given in Fig. 5 
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_B_ 

V B ' 

S IMPLE FLUID 

Fig. 4.-

where the reduced virial at TB/T = 3.5 is plotted 
against the value a t TB/T = 2 for various models. 
I t is apparent t ha t the points for linear and spheri
cal core molecules fall on the same curve within 
very small limits. The points for dipolar molecules 
are on a definitely different curve. However, y can 
have values up to about 0.7 before a 1% difference 
is exceeded a t each temperature. 

The available experimental second virial coef
ficients were examined in terms of these effects. 
While the data generally conformed to these fami
lies of theoretical curves, the experimental accuracy 
is not high enough to allow precise determinations 
of the parameters related to the core or the dipole 
moment. Kihara assumed reasonable cores and 
obtained agreement with the experimental virial 
coefficients—a result consistent with this conclu
sion. For dipolar molecules meaningful values of 
the parameter y can be obtained by use of the di
pole moment value in addition to the virial coef
ficient data provided the lat ter cover a wide enough 
temperature range. Rowlinson15 has made such 
analyses in a number of cases. For example he finds 
for ammonia values yielding y = 4 which is far 
above the limit of 0.7 for conformity to our scheme 
within 1%. By contrast the y value for chloro
form is only 0.04 and t ha t for ethyl chloride is 
0.16. 

In conclusion, we have shown tha t for non-polar 
molecules of various shapes and for molecules with 
modest dipoles (y < 0.7), the theoretical second 

2 3 
T B / T . 

Reduced second virial coefficients for several models. 

4.Oi 

Fig. 5.—Deviation plot of the data of Fig. 4. Deviations 
from the simple fluid (S.F.) at (TB/T) = 3.5 and 2, respec 
tively, are compared. 
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virial coefficients conform within about 1% to the 
theory we are proposing for volumetric and thermo
dynamic properties generally. In later papers we 

A general introduction together with discussion 
of the theoretical basis for the correlation scheme 
has been presented in Part I of this series.3 Al
though exact theory was available only for the 
second virial coefficient, those results together with 
general arguments indicated that a three parameter 
correlation might well yield at least a factor of ten 
greater accuracy than is obtained from the simple 
hypothesis of corresponding states. As was indi
cated in Part I, we take two critical constants for 
two of our three independent parameters for each 
substance. The critical temperature is readily se
lected as the first parameter which characterizes the 
intermolecular interaction energy. 

While the critical volume would be the simple 
measure related to intermolecular distance, it is 
unsatisfactory from the empirical viewpoint. The 
differential compressibility is infinite at the critical 
point. Consequently the critical volume is not 
directly measureable with any accuracy. The val
ues commonly given are extrapolated. The criti
cal pressure is a much more accurately determinable 
quantity and it suffices just as well for correlation 
purposes. Hence we choose the critical pressure 
as our second parameter. 

The third parameter is to measure the deviation 
of the intermolecular potential from that of a sim
ple fluid. An important deviation arises from the 
fact that the sum of the inverse sixth power terms 
applying to the various portions of a pair of com
plex molecules cannot be replaced by a single in
verse sixth power term in the distance between mo
lecular centers. Since these forces between non-
central portions of the molecules must be consid
ered, the term acentric factor is suggested. 

The most convenient empirical quantity is the 
reduced vapor pressure at a point well removed 

(1) This research was a part of the program of Research Project 
50 of the American Petroleum Institute. 

(2) A portion of this paper is abstracted from the Ph.D. Disserta
tion of David Z. Lippmann, University of California, 1953. 

(3) K. S. Pitzer, T H I S JOURNAL, 77, 3427 (1955). 

shall test this scheme against various experimental 
data and present general tables. 
BERKELEY, CALIF. 

from the critical point. This in effect gives the 
slope of the vapor pressure curve, see Fig. 2, Part I. 
For a simple fluid3 (e.g., A, Kr, Xe, CH4) the re
duced vapor pressure is almost precisely 0.1 at a 
reduced temperature of 0.7. This point is well re
moved from the critical yet above the melting point 
for almost all substances. Consequently it is conven
ient to take 0.7 as our standard value of reduced 
temperature for the determination of the acentric 
factor which we define as 

a log P1. - 1.000 

with Pr the reduced vapor pressure (P/PQ) at Tr = 
0.7. 

The slope of the vapor pressure curve is, of course, 
closely related to the entropy of vaporization. 
Thus we may regard our acentric factor as a meas
ure of the increase in the entropy of vaporization 
over that of a simple fluid. It was also shown in 
Part I that the acentric factor would depend upon 
the core radius of a globular molecule, the length 
of an elongated molecule, or the dipole moment of a 
slightly polar molecule. 

Table I lists the essential parameters for the 
various substances which were given substantial 
consideration in our correlations. On the basis of 
the arguments in Part I it was not expected that 
the highly polar molecules, ammonia and water, 
would conform to our scheme. Points for these sub
stances are included on some graphs to illustrate 
the magnitude of the deviations; however, these 
points were given no weight in preparing the final 
tables. The references to Table I include the 
sources of data for the respective substances for the 
other tables of this paper.4 

Compressibility Factor.—The compressibility 
factor was interpolated graphically to even values 

(4) In addition to the substances listed in Table I, supplementary 
use was made of data for w-hexane in certain areas. The sources are 
S. Young, Scient. Proc. Roy. Dub. Soc, New Series 12, 374 (1909-
1910); E. A. Kelso with W. A. Felsing, lnd. Bng. Chem.,31, 161 (1942); 
E. A. Kelso with W. A. Felsing, T H I S JOURNAL, 62, 3132 (1940). 
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The theoretical considerations of Part I suggested that the compressibility factor of a normal liquid in either gas or liquid 
state should be expressible as a function of just one parameter in addition to the reduced temperature and reduced pressure. 
The additional parameter is defined in terms of the vapor pressure a t T1 = 0.7. This third parameter is required because 
the intermolecular force in complex molecules is a sum of interactions between various parts of the molecules—not just their 
centers—hence the name acentric factor is suggested. The theory requires that any group of substances with equal values 
of the acentric factor should conform among themselves to the principle of corresponding states. This result is verified 
with relatively high accuracy. While a completely analytical expression for the compressibility factor was not obtained, 
power series expressions in the acentric factor proved satisfactory and the coefficients are tabulated for a wide range of re
duced temperature and pressure. The reduced vapor pressure and the entropy of vaporization are also treated similarly. 
Agreement is obtained to 0.5% over most regions with maximum deviations of about 2%. 


